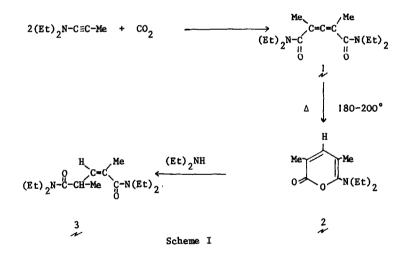
Tetrahedron Letters No.27, pp. 2483-2484, 1971. Pergamon Press. Printed in Great Britain.

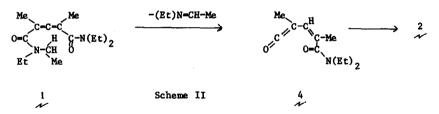

UNEXPECTED THERMOLYSIS OF THE N,N-DIETHYLAMIDE OF AN ALLENE-1,3-DICARBOXYLIC ACID : SYNTHESIS OF A 6-AMINO- α -PYRONE.

Jacqueline Ficini, Joseph Pouliquen, Jean-Pierre Paulme

Laboratoire de Chimie Organique de Synthèse 8, rue Cuvier - Paris (5e)

(Received in UK 21 May 1971; accepted in UK for publication 2 June 1971)

The cycloaddition of diethylaminopropyne ⁽¹⁾ with carbon dioxide gives, in almost quantitative yields ⁽²⁾, the <u>bis</u>-N,N-diethylamide of 2,4-dimethyl-2,3-pentadiene dioic acid 1, a member of the class of allenic diacids of which only the simplest member, allene-1,3-dicarboxylic acid (glutinic acid) has yet been described ⁽³⁾:


We now show that this allenic diamide 1, while a stable liquid at moderate temperature, undergoes an unexpected thermal transformation, starting at about 180° under vacuum (0.1 mm), leading in 40 % yield, to the as yet unknown 6-amino- α -pyrone 2 :bp (0.05 mm) 72°; ir (CC1₄) 1720 cm⁻¹; nmr ⁽⁴⁾ (C₆D₆) & 0.95 ppm (6H), 1.65 ppm (3H), 1.95 ppm (3H), 2.9 ppm (4H), 6.5 ppm (1H), mass spectrum ⁽⁴⁾, (70 eV) <u>m/e</u> (rel intensity) : 195 (M⁺, 80), 167 (100) 152 (88), i38 (75), 123 (30), 110 (65), 95 (30), 72 (20), 67 (100).

No.27

Diethylamine reacts with 2 (15 h, reflux in ether) to give in quantitative yield (Scheme I) the corresponding <u>bis</u>-N,N-diethylamide of <u>cis</u>- α , γ -dimethyl glutaconic acid 3 : bp (0.005) 105°; ir (film) 1640 cm⁻¹; nmr (C₆D₆) δ 1.7 ppm (d, vinylic methyl, J=1.6 Hz), 5.65 ppm (d₁ x d₂, vinylic H, J₁=10 Hz, J₂=1.6 Hz).

The diamide 3 has the same vpc retention time as that of one of the two isomers from the semi-hydrogenation of the allenic amide 1 and its mass spectrum shows the same fragmentation with that of the <u>bis</u>-N,N-diethylamide of <u>trans</u> α , γ -dimethyl glutaconic acid ⁽²⁾.

We would like to suggest that the thermolysis of the allenic diamide 1 is initiated by a cyclic 1,5-migration of one of the methylenic hydrogens of the ethylamino group (reverse ene-synthesis $^{(5)}$) with simultaneous rupture of the carbon-nitrogen bond of the amide, thus leading to the intermediary ketene 4. The latter then undergoes heterocyclization to the a-pyrone 2 (Scheme II). The relative facility of this unusual transformation is undoubtly due to the fact that the structural situation is such that strain is not increased in the transformation allene \rightarrow ketene, while conjugation is greater in the intermediary ketene.

The thermolysis of the allenic diamide 1 which can be made in 15 min. in 95 % yield from CO₂ and diethylaminopropyne, constitutes a particularly simple and efficient route to 6-amino- α -pyrones of type 2.

We are pursuing these studies with other allenic amides to establish the generality of this thermolysis and are attempting to get conclusive proof of its mechanism.

References:

- (1) a) J.Ficini, C.Barbara. Bull. Soc. Chim. -2787 (1965).
 - b) H.G.Viehe (General Review) Angew. Chem. Intl. Edn. <u>6</u>, 767 (1967).
 c) Also obtainable from Fluka.
- (2) J.Ficini, J.Pouliquen. J. Am. Chem. Soc. in press (July 1971).
- (3) E.R.H.Jones, G.H.Mansfield, M.C.Whiting. J. Chem. Soc. 3208 (1954).
- (4) Nmr spectra were recorded on a Varian T 60 with internal TMS reference, or a Varian A 60.
 Mass spectra were recorded on a R-Mu 6.E Hitachi Perkin Elmer mass spectrometer by J.Le Querè - Laboratoire de Spectrochimie moléculaire - 8, rue Cuvier - Paris 5e.
- (5) H.M.R.Hoffmann Angew. Chem. Intl. Edn. 8, 556 (1969).

2484